极限函数中,一个函数的极限为0那与之相乘的有界函数形成的极限一定是0么?无穷乘以有界的极限等于什么
极限函数中,一个函数的极限为0那与之相乘的有界函数形成的极限一定是0么?是0,因为无穷小乘以有界函数等于无穷小,无穷小量:通常以函数、序列等形式出现,无穷小量即以数0为极限的变量,无限接近于0,确切地说,当自变量x无限接近x0(或x的绝对值无限增大)时,函数值f(x)与0无限接近,即f(x)→0(或f(x)=0),则称f(x)为当x→x0(或x→∞)时的无穷小量,有界函数:设f(x)是区间E上的函数,若对于任意的x属于E,存在常数m、M,使得m≤f(x)≤M,则称f(x)是区间E上的有界函数,其中m称为f(x)在区间E上的下界,M称为f(x)在
极限函数中,一个函数的极限为0那与之相乘的有界函数形成的极限一定是0么?
是0。因为无穷小乘以有界函数等于无穷小。无穷小量:通常以函数、序列等形式出现。无穷小量即以数0为极限的变量,无限接近于0。确切地说,当自变量x无限接近x0(或x的绝对值无限增大)时,函数值f(x)与0无限接近,即f(x)→0(或f(x)=0),则称f(x)为当x→x0(或x→∞)时的无穷小量。有界函数:设f(x)是区间E上的函数,若对于任意的x属于E,存在常数m、M,使得m≤f(x)≤M,则称f(x)是区间E上的有界函数。其中m称为f(x)在区间E上的下界,M称为f(x)在区间E上的上界。扩展资料:极限的性质:
1、唯一性:若数列的极限存在,则极限值是唯一的,且它的任何子列的极限与原数列的相等。
2、有界性:如果一个数列’收敛‘(有极限),那么这个数列一定有界。但是,如果一个数列有界,这个数列未必收敛。例如数列:“1,-1,1,-1,……,(-1)n+1”。
是0。因为无穷小乘以有界函数等于无穷小。无穷小量:通常以函数、序列等形式出现。无穷小量即以数0为极限的变量,无限接近于0。确切地说,当自变量x无限接近x0(或x的绝对值无限增大)时,函数值f(x)与0无限接近,即f(x)→0(或f(x)=0),则称f(x)为当x→x0(或x→∞)时的无穷小量。有界函数:设f(x)是区间E上的函数,若对于任意的x属于E,存在常数m、M,使得m≤f(x)≤M,则称f(x)是区间E上的有界函数。其中m称为f(x)在区间E上的下界,M称为f(x)在区间E上的上界。扩展资料:极限的性质:
1、唯一性:若数列的极限存在,则极限值是唯一的,且它的任何子列的极限与原数列的相等。
2、有界性:如果一个数列’收敛‘(有极限),那么这个数列一定有界。但是,如果一个数列有界,这个数列未必收敛。例如数列 :“1,-1,1,-1,……,(-1)n+1”。
无穷乘以有界的极限等于什么
无穷乘有界函数不可以确定结果,可能是无穷,也可能是不存在,有界函数并不一定是连续的,闭区间上的单调函数必有界,闭区间上的连续函数也必有界。
在自变量的同一变化过程中,无穷大与无穷小具有倒数关系,无穷大记作∞,不可与很大的数混为一谈。无穷大分为正无穷大、负无穷大,分别记作+∞、-∞,非常广泛的应用于数学当中。